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Pressure and Maxwell Tensor in a Coulomb Fluid

B. Jancovici1

Received December 15, 1999

The pressure in a classical Coulomb fluid at equilibrium is obtained from the
Maxwell tensor at some point inside the fluid, by a suitable statistical average.
For fluids in a Euclidean space, this is a fresh look at known results. But for
fluids in a curved space, a case which is of some interest, these unambiguous results
from the Maxwell tensor approach have not been obtained by other methods.
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1. INTRODUCTION

The aim of the present paper is to revisit the concept of pressure for a
Coulomb fluid, i.e., a fluid made of particles interacting through Coulomb's
law (electrolyte, plasma,...). We consider only fluids in thermodynamic
equilibrium, and assume that classical (i.e., non-quantum) statistical
mechanics is applicable.

Pressure is often defined as the force per unit area that a fluid exerts
on the walls of a (large) vessel containing it. However, pressure may also
be defined without reference to any wall. One has to imagine some
immaterial plane surface across the fluid, and pressure is the force per unit
area with which the fluid lying on one side of this surface pushes on the
fluid lying on the other side. Both definitions agree with each other.

From a microscopic point of view, the force between two parts of the
fluid is usually described in terms of the interactions between the molecules.
Two molecules at a distance r from each other are supposed to interact
through some potential. This is the standard approach, which is briefly
recalled in Section 2.
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In the case of electromagnetism, Maxwell, following Faraday, came to
a different point of view: the forces between two charged objects are
mediated by fields. At a given point of space, even in vacuum outside the
charges, there is a stress tensor (the Maxwell stress tensor), a local quantity
defined in terms of the fields at that point, similar to the stress tensor
within some elastic medium. In this picture, every region of ``empty'' space
exerts forces on the regions ajacent to it. In Section 3, it is shown how
the pressure at some point inside a Coulomb fluid can be defined and
computed from the Maxwell tensor at that point by a suitable statistical
average, with an appropriate prescription for obtaining a finite result. This
result agrees with the standard one.

Section 3 ``extends'' the above ideas to the case of two-dimensional
models.

Section 4 discusses the case of Coulomb fluids living in a curved space.
In this case, the Maxwell tensor approach will be shown to be especially
appropriate.

2. A SUMMARY OF THE STANDARD APPROACH

In the simple case of a fluid made of one species of particles, with a
pair interaction v(r) depending only on the distance r, the pressure P is
found to be, in the thermodynamic limit,

P=nkT&
1
6

n2 |
dv
dr

rg(r) dr (2.1)

where n is the number density (number of particles per unit volume), k is
Boltzmann's constant, T is the temperature, and g(r) is the pair distribu-
tion function. In (2.1), nkT is the ideal gas part of the pressure (related to
the momentum carried by the particles), while the following term, due to
the interactions, is called the excess pressure Pex . The same equation (2.1)
is obtained by looking either at the pressure on the walls(1) or at the
pressure in the bulk fluid.(2)

Real Coulomb fluids are made of several species of particles (for
instance, in an electrolyte, positive and negative ions, plus the solvent
molecules). In a classical model, some short-range non-Coulombic interac-
tion must be introduced, for avoiding the collapse on each other of particles
of opposite sign. Here, for simplicity, we rather consider only a simplified
model, the one-component plasma (OCP):(3) identical point-particles of
one sign, each of them carrying an electric charge q, embedded in a
uniform background of opposite sign which ensures overall neutrality.
Only the Coulomb interaction is retained, thus the interaction is v(r)=q2�r
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and (dv�dr) r=&q2�r. Due to the background, the average charge in a
volume element dr at a distance r of a given particle is qn[ g(r)&1] rather
than qng(r), and, in the case of the OCP, Eq. (1) is to be replaced by

P=nkT+
q2n2

6 |
1
r

h(r) dr (2.2)

where h(r)= g(r)&1 is the pair correlation function. It may be noted that
Pex is one third of the potential energy density.2

The above standard approach is based on the assumption of an inter-
action-at-distance q2�r. In the next Section, it will be shown how (2.2) can
be derived by using the Maxwell tensor.

3. THE MAXWELL TENSOR APPROACH

If only electrostatic interactions are retained (magnetic effects are
neglected), the Maxwell tensor is(5)

T:;=
1

4? \E:E;&
1
2

E } E$:;+ (3.1)

In (3.1), the Greek indices label the three Cartesian axes (x, y, z). T:; is the
: component of the force per unit area transmitted, across a plane normal
to the ; axis, to the fluid lying on the negative side of this plane. Thus,
choosing for ; any axis, say the x axis, one obtains for the excess pressure,
which is a force along that axis,

Pex=&(Txx) =&
1

8?
(E 2

x&E 2
y&E 2

z) (3.2)

where ( } } } ) denotes a statistical average on all particle configurations
(the electric field at some point is a function of the particle configuration).
Our task is to evaluate the statistical average (3.2) at some point inside the
fluid, say at the origin.

Let \(2)(r12) be the statistical average of the product microscopic
charge density at r1 times microscopic charge density at r2 (r12=r2&r1).
From (3.2),

Pex=&
1

8? | dr1 dr2

x1 x2& y1 y2&z1z2

r3
1 r3

2

\(2)(r12) (3.3)
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In the present case of an OCP,

\(2)(r12)=q2[n$(r12)+n2h(r12)] (3.4)

Using (3.4) in (3.3) gives to Pex two contributions Pself and Pnonself involv-
ing the $ part and the h part of (3.4), respectively. Pnonself gives no dif-
ficulty. This is a convergent integral (indeed, h is &1 at small r12 because
the particles strongly repel each other, and h has a fast decay at large r12

because remote particles are uncorrelated). Because of the rotational sym-
metry around the origin, it can be rewritten as

Pnonself=
q2n2

24? | dr1 dr2

r1 } r2

r3
1r3

2

h(r12) (3.5)

But

Pself=&
nq2

8? | dr
x2& y2&z2

r6 (3.6)

diverges at small r.
The resolution of the difficulty is that the force that each particle

exerts on itself should not be taken into account. Thus, the integral in (3.6)
must be regularized by the prescription that no particle sits on the x=0
plane on which we have chosen to compute the pressure force. This
prescription can be enforced by removing from the integration domain a
thin slab &=<x<= and taking the limit = � 0 at the end. This prescription
does not change the convergent integral (3.5). But it means that the self
part (3.6) must be defined, in cylindrical coordinates (x, \), as

Pself=&
nq2

8?
lim
= � 0 ||x|>=

dx |
�

0
2? d\ \

x2&\2

(x2+\2)3 (3.7)

Since the integral on \, performed first, is found to vanish, the result is
Pself=0.

As to Pnonself , (3.5) can be easily computed by taking as integration
variables r1 and r12 , and performing the integral on r1 first with the result
4?�r12 . The final result is

Pex=Pnonself=
q2n2

6 | dr12

1
r12

h(r12) (3.8)

in agreement with the standard formula (2.2).
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An alternative way of calculating Pself will turn out to be more
appropriate for extensions which follow. (3.6) is split into the contributions
P0 of r<r0 and P1 of r>r0 , where r0 is the radius of a small sphere
centered at the origin. The prescription that no particle sits on the plane
x=0 does not change the convergent part P1 , which can be computed,
using the rotational symmetry, as

P1=
nq2

24? |
r>r0

dr
r4 =

nq2

6r0

(3.9)

It is only in P0 that the rotational symmetry is broken by the prescription
|x|>=, which gives

P0=&
nq2

8?
lim
= � 0 |

=<|x|<r0

dx |
- r2

0&x2

0
2?d\\

x2&\2

(x2+\2)3=&
nq2

6r0

(3.10)

Thus Pself=P0+P1=0, and (2.2) is retrieved.

4. TWO-DIMENSIONAL MODELS

Two-dimensional models of Coulomb fluids are of interest for at least
two reasons. First, some of these models are physically relevant. Second,
exact results are available. The two-dimensional case has special features
which require the present separate discussion.

In two dimensions, the Coulomb interaction (as defined through the
Poisson equation) between two charges q and q$ is &qq$ ln(r�L), where
L is some irrelevant length. Since this interaction diverges at r=0 only
mildly, in addition to the OCP it is also possible to consider a two-compo-
nent plasma (TCP), made of positive and negative point-particles of
respective charges q and &q, without any additional short-range repulsion
(which is stable provided that the coupling constant 1=q2�kT be smaller
than 2).

For the OCP, the two-dimensional analog of (2.1), with the back-
ground taken into account, is

P=nkT&
1
4

n2 |
dv
dr

rh(r) dr (4.1)

Now v(r)=&q2 ln(r�L) and (4.1) becomes

P=nkT+ 1
4n2q2 | h(r) dr (4.2)
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Perfect screening, present in a conductor, says that

n | h(r) dr=&1 (4.3)

(this means that the polarization cloud around a particle of charge q
carries the opposite charge &q). Using (4.3) in (4.2) gives the simple exact
equation of state (6, 7)

P=n \kT&
q2

4 + (4.4)

Now, Pex=&nq2�4 is no longer related to the potential energy density.
We now turn to the Maxwell tensor approach. In two dimensions, the

Maxwell tensor is

T:;=
1

2? \E:E;&
1
2

E } E$:;+ (4.5)

with Greek indices now labeling two Cartesian axes (x, y). (3.3) is replaced by

Pex=&
1

4? | dr1 dr2

x1x2& y1 y2

r2
1r2

2

\ (2)(r12) (4.6)

where, for an OCP, (3.4) still holds. Now, although (4.6) still converges for
large values of r1 and r2 (because \(2)(r12) has a fast decay as r12 increases
and its integral vanishes), separating it in self and nonself parts would
generate terms separately diverging at infinity. Here, it is more appropriate
to split (4.6) in another way, similar to what has been done at the end of
Section 3. Namely, in (4.6), one separates the contribution P0 of the
integration domain (r1 , r2<r0) and the rest Pex&P0 . This rest is a con-
vergent integral and, by rotational symmetry, it vanishes. One is left with
P0 which can be split into its self and nonself parts, with now a nonself part
which is convergent and also vanishes by rotational symmetry. Finally, the
self part has to be defined in the same way as (3.10), and

P0=&
nq2

4?
lim
= � 0 |

=<|x|<r0

dx |
- r0

0&x2

&- r2
0&x2

dy
x2& y2

(x2+ y2)2=&
nq2

4
(4.7)

Thus

Pex=P0=&
nq2

4
(4.8)

in agreement with (4.4).
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Similar considerations hold for the TCP, as long as 1<2, and the
equation of state again is (4.4), where now n is the total number density of
the particles.

The two-dimensional OCP can also be obtained as a limit of the
&-dimensional one, as explained in Appendix A.

5. CURVED SPACES

The statistical mechanics of a Coulomb fluid living in a curved space
is of interest for at least two reasons. First, for doing numerical simulations
(necessarily on a finite system) without having to deal with boundary
effects, a clever method has been to confine the system on the surface of a
sphere (in the two-dimensional case) (8) or an hypersphere (in the three-
dimensional case).(9, 10) Second, for two-dimensional Coulomb fluids on a
surface of constant negative curvature (pseudosphere), (11) it is possible to
go to the limit of an infinite system while keeping a finite curvature, thus
to look at the properties of a curved infinite system (something which can-
not be done for a sphere or hypersphere).

The present paper actually arose from the question: How to define the
pressure of a Coulomb fluid in a curved space, away frow any wall? A for-
mula like (2.1) is based on the interaction-at-distance picture: the force
acting on the fluid lying on one side of some immaterial plane is the sum
of elementary forces acting on each molecule. This picture cannot be
generalized to the case of a curved space, because there is no straight-
forward way of summing forces (vectors) applied at different points of
space. Thus, the Maxwell tensor picture seems to be the only possible one,
defining the pressure at a given point of space as a local quantity depending
only on the electric field at this point.

Three kinds of Coulomb fluids will be considered: The three-dimen-
sional OCP on a hypersphere, the two-dimensional OCP or TCP on a
sphere, the two-dimensional OCP or TCP on a pseudosphere.

5.1. OCP on a Hypersphere

The hypersphere is the four-dimensional analog of the usual sphere.
We consider an OCP living on the three-dimensional ``surface'' S3 of a
hypersphere of radius R. On S3 , the geodesic distance between two points
is R�, where � # [0, ?] is the angular distance between these points, as
seen from the center of the hypersphere. The volume element between two
concentric hyperspheres of radii R� and R(�+d�) is dV=4?R3 sin2 � d�.
The total volume of S3 is V=2?2R3.
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Since S3 is a compact manifold without boundary, electric potentials
and fields can be defined only if the total charge is zero. In particular, the
electric field created by one point charge cannot be defined. For over-
coming this difficulty, one can consider the OCP as a collection of pseudo-
charges:(9) a pseudocharge is defined as a point charge q plus a uniform
background of total charge &q. At a point M located at a geodesic dis-
tance R� from a pseudocharge located at M0 , the electric potential created
by the pseudocharge is

8=
q

?R \(?&�) ctn �&
1
2++V0 (5.1)

where V0 is an arbitrary constant. The corresponding electric field at M is

E=
q

?R2 \ctn �+
?&�
sin2 �+ t (5.2)

where t is the unit vector tangent to the geodesic MM0 at M. From (5.1),
the interaction energy between two pseudocharges i and j at a geodesic
distance R�ij of each other is found to be

,(�ij )=
q2

?R \(?&�ij ) ctn �ij&
1
2+ (5.3)

independent of V0 .
The excess pressure is given by (3.2) where the electric field can be

written as E=� Ei , with Ei the field created by the i th pseudocharge. As
above, (3.2) can be split into a self part Pself (made of EiEi terms) and a
nonself part Pnonself (made of Ei Ej (i{ j) terms).

Because of the rotational symmetry, Pnonself can be written as

Pnonself=
1

24? � :
i{ j

Ei } Ej�=
1
3

unonself (5.4)

where unonself is the nonself part of the potential energy density, which can
be reexpressed in terms of the interaction , rather than in terms of fields,
by the usual integration by parts, as

unonself=
1

2?2R3 � :
i< j

,(�ij )�=
n2

2 | ,(�) h(�) dV (5.5)

where one can use the pair correlation function h rather than the pair
distribution function g=h+1 since � , dV=0.
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As to Pself , it is a divergent integral which however can be made finite
by adapting what has been done at the end of Section 3, namely splitting
it into the contribution P0 of geodesic distances R�<R�0 , and the finite
contribution P1 of R�>R�0 for which rotational symmetry can be used.
In terms of E(�) given by (5.2),

P1=
n

24? |
?

�0

E2(�) 4?R3 sin2 � d� (5.6)

Evaluating the integral in (5.6) as �0 � 0 gives

P1=
nq2

6R \ 1
�0

&
3

2?
+O(�0)+ (5.7)

On the other hand, for P0 , the curvature effects become negligible as
�0 � 0 (more precisely, as shown in Appendix B, they are O(�0)) and the
Euclidean prescription (3.10) can be used, with r0=R�0 , giving

P0=&
nq2

6R�0

+O(�0) (5.8)

Finally, the total pressure is

P=nkT+
n2

6 | ,(�) h(�) dV&
nq2

4?R
(5.9)

This is the generalization of (2.2) to the case of a hypersphere.
The present evaluation of the pressure makes no explicit use of the

self-energy of a pseudoparticle. This is an important remark. Indeed,
another possible definition of the pressure would be minus the derivative of
the free energy with respect to the volume. But, for evaluating the free
energy, it is necessary to define properly the zero of energy for a system of
pseudoparticles, and this necessarily involves some heuristic convention
about the self-energy of a pseudoparticle. In ref. 9 a reasonable convention
gave &3q2�4?R for this self-energy, and the corresponding pressure is iden-
tical with (5.9). This pressure does obey the usual relation

Pex= 1
3 u (5.10)

where u is the total potential energy density defined with the above conven-
tion. However, in ref. 10, another reasonable convention (giving a faster
approach to the thermodynamic limit as R � �) has been used, with addi-
tional terms of order higher than 1�R, and the pressure derived from the
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corresponding free energy no longer agrees with (5.9). The definition of the
pressure in terms of the Maxwell tensor is free from this arbitrariness.

5.2. OCP or TCP on a Sphere

The above considerations can be easily adapted to the (simpler) case
of two-dimensional Coulomb systems living on the surface of a sphere.
Now, the electric potential created by a pseudocharge is

8=&q ln sin(��2)+V0 (5.11)

Pnonself and P1 , convergent integrals, vanish because of the rotational sym-
metry. One is left with P0 , for which the curvature effects are negligible and
(4.7) holds with the same result (4.8) as in the case of a plane system. This
result Pex=&nq2�4 holds for an OCP, and also for a TCP when 1<2.

Here too, the free energy depends on an arbitrary convention about
the zero of energy. In ref. 8, this convention was implicitly made by the way
in which (5.11) was used together with the choice V0=&q ln(2R�L), with
R the radius of the sphere. It is only thanks to this convention that the
corresponding free energy has a derivative with respect to the sphere area
which correctly gives the equation of state (4.4).

5.3. OCP or TCP on a Pseudosphere

Recently, two-dimensional Coulomb systems living on a surface of
constant negative curvature (a pseudosphere) were studied.(11) Since, unlike
a sphere, a pseudosphere is infinite, one has the interesting possibility of
considering systems which are both infinite and curved.

Let a be a length such that the Gaussian curvature of the pseudo-
sphere is &1�a2 (instead of 1�R2 on a sphere). Now, the electric potential
and field created by a single point charge q exist. At a geodesic distance s
from this charge, the electric potential is

8=&q ln tanh
s

2a
(5.12)

where the possible additive constant has been fixed by the condition that
this potential vanishes at infinity (s � �). The electric field is

E=
q

a sinh(s�a)
t (5.13)

where t is the unit vector tangent to the geodesic.
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The pressure can be obtained from the Maxwell tensor just as in the
case of a sphere, with the same result (4.4), i.e., Pex=&nq2�4. This pressure
holds not only in the thermodynamic limit, but also at the center of a finite
disk.

The above result for the pressure calls for some discussion. On a
pseudosphere, when the size of a large domain increases, its perimeter
grows as fast as its area. As a consequence, there is no uniquely defined
thermodynamic limit for the free energy per particle (this limit depends on
the shape of the domain and on the boundary conditions). A bulk pressure
cannot be defined by deriving the free energy with respect to the area. In
ref. 11, a bulk ``pressure'' p was defined by its virial expansion with the
prescription that the thermodynamic limit of each virial coefficient Bk

(which seems to exist on a pseudosphere) has to be computed before the
virial series in powers of the density n is summed. It is now apparent that
this p is not identical with the pressure P obtained from the Maxwell tensor
in the form (4.4). We now believe that the correct pressure is P, while p
only is a mathematical quantity (seemingly with some interesting properties).

Nevertheless an important result of ref. 11 is true: there is at least one
thermodynamic quantity, the bulk energy per particle, which has a series
expansion in integer powers of the density, in contrast to the case of a
plane system in which the energy per particle is singular at zero density.

5.4. Why No Trace Anomaly?

Some time ago, it has been remarked that conducting Coulomb
systems are critical-like at any temperature(12, 13) in some sense: they have
long-range electric potential and field correlations, and the free energy of a
two-dimensional Coulomb system with an electric potential , has
logarithmic finite-size corrections similar to the ones which occur(14) in a
critical system described by a conformal-invariant field theory with a field ,.
In ref. 14, it was shown that, for a critical system, this logarithmic correc-
tion to the free energy is associated to a trace anomaly of the stress tensor,
proportional to the Gaussian curvature of the surface on which the system
lives. Thus, at first sight, one might expect that the pressure of a two-
dimensional Coulomb system (which is minus one half of the expectation
value of the trace of the Maxwell tensor, with a suitably defined self part)
would have a term O(1�R2) on a sphere and O(1�a2) on a pseudosphere. Yet,
such terms are not present in (4.4). Why?

Actually, for a Coulomb system made of N particles on a sphere of
radius R, thus with a density n=N�4?R2, the free energy F has a term
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(kT�6) ln N. The pressure is (with a suitable definition of the zero of
energy) a partial derivative at constant N: P=&(�F��(4?R2))N . Thus the
ln N term in F gives no contribution to the pressure, in agreement with
(4.4). However, in field theory, some ultraviolet cutoff (a length ') has to
be introduced and the trace of the stress tensor has an expectation value
(3) related to (�F��(4?R2))' with now a derivative taken at constant
cutoff. When the Coulomb system is described in terms of a field theory,
the role of the cutoff is played by the microscopic scale '=n&1�2. Thus, the
ln N=ln(n4?R2) term in F is associated to a trace anomaly in the field-
theoretical (3) , not in P.

A related statement is: If the expectation value of the trace of the
Maxwell tensor is computed with a field-theoretical measure (the func-
tional integral measure D,), it has a trace anomaly. This trace anomaly is
not present when the measure is the particle configuration space one
dr1 dr2 } } } drN .

Similarly, the pressure (4.8) on a pseudosphere has no trace anomaly.

6. CONCLUSION

The pressure in a Coulomb fluid has been defined as minus the statisti-
cal average of a diagonal element, say Txx of the Maxwell tensor. This
definition leads to an ill-defined integral, which however can be given a
definite value by an appropriate prescription: the fluid is supposed split
into two regions separated by a thin empty slab normal to the x-axis,
Txx is computed at a point inside this slab, and the limit of a slab of zero
thickness is taken at the end.

For Coulomb fluids in an Euclidean space, this approach through the
Maxwell tensor is just a fresh look at well-known results. But, for Coulomb
systems in a curved space, we are not aware of any other way of obtaining
an unambiguous value for the pressure.

For simplicity, only point-particle systems without short-range forces
have been considered. But an extension to systems with hard cores seems
feasible.

APPENDIX A. THE &-DIMENSIONAL OCP

In this Appendix, the excess pressure of a &-dimensional OCP (&>2)
is related to its potential energy density. The dimension & is treated as a
continuous variable, and the limit & � 2 is taken.
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The unit of charge is defined such that the electric field at a distance
r from a unit charge be 1�r&&1. Thus, the potential is 1�(&&2) r&&2. The
Maxwell tensor is

T:;=
1

S&&1 \E: E;&
1
2

E } E$:;+ (A.1)

where

S&&1=
2?&�2

1 (&�2)
(A.2)

is the area of the sphere of unit radius.
In terms of the Maxwell tensor T, the nonself part of the pressure is

Pnonself=&
1
&

( tr T ) nonself=
&&2

&
1

2S&&1

(E2) nonself (A.3)

where the nonself part of the electrostatic energy density is

1
2S&&1

(E2) nonself=
q2n2

2S&&1
| dr1 dr2

r1 } r2

r&
1r&

2

h(r12) (A.4)

Taking as integration variables r1 and r12 , and performing first the integral
on r1 , one finds, as expected, the potential energy density

1
2S&&1

(E2) nonself=
q2n2

2 | dr12

1
(&&2) r&&2

12

h(r12) (A.5)

As to the self part of the pressure Pself=&(Txx) self , it must be
defined, like in (3.7), as

Pself=&
nq2

2S&&1

lim
= � 0 |

|x|>=
dx |

�

0
S&&2d\\&&2 x2&\2

(x2+\2)& (A.6)

Here too, the integral on \, performed first, is found to vanish, thus
Pself=0.

Therefore, the final result for the excess pressure is

Pex=
q2n2

2& | dr12

1
r&&2

12

h(r12) (A.7)
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In the limit & � 2, using the perfect screening rule (4.3), one retrieves

Pex=&
nq2

4
(A.8)

APPENDIX B. CURVATURE EFFECTS IN A SMALL SPHERE

In this Appendix, (5.8) is derived.
In four-dimensional Euclidean space, with Cartesian coordinates

(x, y, z, t), the surface S3 of a hypersphere of radius R centered at the
origin usually is parametrized by the hyperspherical coordinates (u, v, w)
related to the Cartesian ones by

x=sin w sin v cos u, y=sin w sin v sin u, z=sin w cos v, t=cos w

0�u�2?, 0�v�?, 0�w�? (B.1)

However, here, it is more convenient to parametrize S3 by the three indepen-
dent variables (x, y, z). We define r=(x2+ y2+z2)1�2 and \=( y2+z2)1�2.
A useful relation is r2=R2 sin2 w. Using the Jacobian for the change of coor-
dinates, one finds that the volume element dV=R3 sin2 w sin v du dv dw
becomes

dV=
dx dy dz

cos w
(B.2)

The hypersphere pole x= y=z=0 will be called O. The geodesic distance
between O and (x, y, z) is Rw.

The part P0 of the pressure can be evaluated at O, i.e., the electric field
in (3.2) is the one at O. P0 is that part of Pself which is created by the
pseudocharges located at a geodesic distance from O smaller than R�0 .
The regularization prescription is that there is no particle in a thin slab
|x|<=. The electric field E(w) t created at O by a pseudocharge at (x, y, z)
is given by (5.2) where �=w and t=(&x�r, &y�r, &z�r). Thus, with (B.2)
taken into account, the analog of (3.10) is

P0=&
n

8?
lim
= � 0 |

=<|x|<r0
|

- r2
0&x2

0

2?d\\
cos w

x2&\2

x2+\2 E2(w) (B.3)

where r0=R sin �0 . An expansion in powers of r�R gives

E2(w)
cos w

=
q2

(x2+\2)2 [1+O(r2�R2)] (B.4)
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When the expansion (B.4) is used in (B.3), the leading term of (B.3) is
(3.10) and the next term (which gives a convergent integral for which the
= regularization is superfluous) is O(r0�R2). Using r0=R sin �0 , one does
find

P0=&
nq2

6R�0

+O(�0)

i.e., (5.8).

ACKNOWLEDGMENTS

The author has benefited from stimulating discussions with J. M.
Caillol, J. L. Cardy, A. Comtet, F. Cornu, A. Krzywicki, R. Omne� s, and
many others.

REFERENCES

1. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).
2. P. A. Egelstaff, An Introduction to the Liquid State (Academic, London, 1967).
3. M. Baus and J.-P. Hansen, Phys. Rep. 59:1 (1980).
4. Ph. Choquard, P. Favre, and Ch. Gruber, J. Stat. Phys. 23:405 (1980).
5. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
6. A. M. Salzberg and S. Prager, J. Chem. Phys. 38:2587 (1963).
7. E. H. Hauge and P. C. Hemmer, Phys. Norv. 5:209 (1971).
8. J. M. Caillol, J. Physique-Lettres 42:L-245 (1981).
9. J. M. Caillol and D. Levesque, J. Chem. Phys. 94:597 (1991).

10. J. M. Caillol, J. Chem. Phys. 111:6528 (1999).
11. B. Jancovici and G. Te� llez, J. Stat. Phys. 91:953 (1998).
12. B. Jancovici, G. Manificat, and C. Pisani, J. Stat. Phys. 76:307 (1998).
13. G. Te� llez and P. J. Forrester, J. Stat. Phys. 97:489 (1999).
14. J. L. Cardy and I. Peschel, Nucl. Phys. B 300 [FS 22]:377 (1988).

1295Pressure and Maxwell Tensor in a Coulomb Fluid


